Enabling Cost-Based Support Structure Optimization in Laser Powder Bed Fusion of Metals

نویسندگان

چکیده

Abstract Support structures are essential to laser powder bed fusion (PBF-LB/M). They sustain overhangs, prevent distortion, and dissipate process-induced heat. Their removal after manufacturing is required, though, increasing the overall costs. Therefore, optimization important increase economic efficiency of PBF-LB/M. To enable focused on support structures’ costs, a cost model developed. The whole production process, including design, manufacturing, post-processing part, considered by deriving formulas for individual applied previously developed benchmark procedure. Additionally, case study investigating different layout strategies conducted.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consolidation phenomena in laser and powder-bed based layered manufacturing

Layered manufacturing (LM) is gaining ground for manufacturing prototypes (RP), tools (RT) and functional end products (RM). Laser and powder bed based manufacturing (i.e. selective laser sintering/melting or its variants) holds a special place within the variety of LM processes: no other LM techniques allow processing polymers, metals, ceramics as well as many types of composites. To do so, ho...

متن کامل

Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone-implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modificatio...

متن کامل

Study of the Microstructure and Cracking Mechanisms of Hastelloy X Produced by Laser Powder Bed Fusion

Hastelloy X (HX) is a Ni-based superalloy which suffers from high crack susceptibility during the laser powder bed fusion (LPBF) process. In this work, the microstructure of as-built HX samples was rigorously investigated to understand the main mechanisms leading to crack formation. The microstructural features of as-built HX samples consisted of very fine dendrite architectures with dimensions...

متن کامل

Thermographic Measurements of the Commercial Laser Powder Bed Fusion Process at NIST.

Measurement of the high-temperature melt pool region in the laser powder bed fusion (L-PBF) process is a primary focus of researchers to further understand the dynamic physics of the heating, melting, adhesion, and cooling which define this commercially popular additive manufacturing process. This paper will detail the design, execution, and results of high speed, high magnification in-situ the...

متن کامل

Laser powder bed fusion of Ti-6Al-4V parts: Thermal modeling and mechanical implications

A continuum-scale modeling approach is developed and employed with three-dimensional finite element analysis (FEA), for simulating the temperature response of a Ti-6Al-4V, two-layered parallelepiped with dimensions of 10×5×0.06 mm during Laser Powder Bed Fusion (L-PBF), a metals additive manufacturing (AM) method. The model has been validated using experimental melt pool measurements from the l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: JOM

سال: 2021

ISSN: ['1543-1851', '1047-4838']

DOI: https://doi.org/10.1007/s11837-021-05055-5